Metamath Proof Explorer


Theorem pm2.43b

Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995)

Ref Expression
Hypothesis pm2.43b.1
|- ( ps -> ( ph -> ( ps -> ch ) ) )
Assertion pm2.43b
|- ( ph -> ( ps -> ch ) )

Proof

Step Hyp Ref Expression
1 pm2.43b.1
 |-  ( ps -> ( ph -> ( ps -> ch ) ) )
2 1 pm2.43a
 |-  ( ps -> ( ph -> ch ) )
3 2 com12
 |-  ( ph -> ( ps -> ch ) )