Metamath Proof Explorer


Theorem pm2.43b

Description: Inference absorbing redundant antecedent. (Contributed by NM, 31-Oct-1995)

Ref Expression
Hypothesis pm2.43b.1 ( 𝜓 → ( 𝜑 → ( 𝜓𝜒 ) ) )
Assertion pm2.43b ( 𝜑 → ( 𝜓𝜒 ) )

Proof

Step Hyp Ref Expression
1 pm2.43b.1 ( 𝜓 → ( 𝜑 → ( 𝜓𝜒 ) ) )
2 1 pm2.43a ( 𝜓 → ( 𝜑𝜒 ) )
3 2 com12 ( 𝜑 → ( 𝜓𝜒 ) )