Metamath Proof Explorer


Theorem bitr4id

Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994)

Ref Expression
Hypotheses bitr4id.2
|- ( ps <-> ch )
bitr4id.1
|- ( ph -> ( th <-> ch ) )
Assertion bitr4id
|- ( ph -> ( ps <-> th ) )

Proof

Step Hyp Ref Expression
1 bitr4id.2
 |-  ( ps <-> ch )
2 bitr4id.1
 |-  ( ph -> ( th <-> ch ) )
3 1 bicomi
 |-  ( ch <-> ps )
4 2 3 bitr2di
 |-  ( ph -> ( ps <-> th ) )