Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bitr4id.2 | |- ( ps <-> ch ) |
|
bitr4id.1 | |- ( ph -> ( th <-> ch ) ) |
||
Assertion | bitr4id | |- ( ph -> ( ps <-> th ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bitr4id.2 | |- ( ps <-> ch ) |
|
2 | bitr4id.1 | |- ( ph -> ( th <-> ch ) ) |
|
3 | 1 | bicomi | |- ( ch <-> ps ) |
4 | 2 3 | bitr2di | |- ( ph -> ( ps <-> th ) ) |