Metamath Proof Explorer


Theorem funfvima2

Description: A function's value in an included preimage belongs to the image. (Contributed by NM, 3-Feb-1997)

Ref Expression
Assertion funfvima2
|- ( ( Fun F /\ A C_ dom F ) -> ( B e. A -> ( F ` B ) e. ( F " A ) ) )

Proof

Step Hyp Ref Expression
1 funfvima
 |-  ( ( Fun F /\ B e. dom F ) -> ( B e. A -> ( F ` B ) e. ( F " A ) ) )
2 1 ex
 |-  ( Fun F -> ( B e. dom F -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) )
3 2 com23
 |-  ( Fun F -> ( B e. A -> ( B e. dom F -> ( F ` B ) e. ( F " A ) ) ) )
4 3 a2d
 |-  ( Fun F -> ( ( B e. A -> B e. dom F ) -> ( B e. A -> ( F ` B ) e. ( F " A ) ) ) )
5 ssel
 |-  ( A C_ dom F -> ( B e. A -> B e. dom F ) )
6 4 5 impel
 |-  ( ( Fun F /\ A C_ dom F ) -> ( B e. A -> ( F ` B ) e. ( F " A ) ) )