Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
|- ( x = A -> ( x e. dom F <-> A e. dom F ) ) |
2 |
1
|
anbi2d |
|- ( x = A -> ( ( Fun F /\ x e. dom F ) <-> ( Fun F /\ A e. dom F ) ) ) |
3 |
|
fveq2 |
|- ( x = A -> ( F ` x ) = ( F ` A ) ) |
4 |
3
|
eleq1d |
|- ( x = A -> ( ( F ` x ) e. ran F <-> ( F ` A ) e. ran F ) ) |
5 |
2 4
|
imbi12d |
|- ( x = A -> ( ( ( Fun F /\ x e. dom F ) -> ( F ` x ) e. ran F ) <-> ( ( Fun F /\ A e. dom F ) -> ( F ` A ) e. ran F ) ) ) |
6 |
|
funfvop |
|- ( ( Fun F /\ x e. dom F ) -> <. x , ( F ` x ) >. e. F ) |
7 |
|
vex |
|- x e. _V |
8 |
|
opeq1 |
|- ( y = x -> <. y , ( F ` x ) >. = <. x , ( F ` x ) >. ) |
9 |
8
|
eleq1d |
|- ( y = x -> ( <. y , ( F ` x ) >. e. F <-> <. x , ( F ` x ) >. e. F ) ) |
10 |
7 9
|
spcev |
|- ( <. x , ( F ` x ) >. e. F -> E. y <. y , ( F ` x ) >. e. F ) |
11 |
6 10
|
syl |
|- ( ( Fun F /\ x e. dom F ) -> E. y <. y , ( F ` x ) >. e. F ) |
12 |
|
fvex |
|- ( F ` x ) e. _V |
13 |
12
|
elrn2 |
|- ( ( F ` x ) e. ran F <-> E. y <. y , ( F ` x ) >. e. F ) |
14 |
11 13
|
sylibr |
|- ( ( Fun F /\ x e. dom F ) -> ( F ` x ) e. ran F ) |
15 |
5 14
|
vtoclg |
|- ( A e. dom F -> ( ( Fun F /\ A e. dom F ) -> ( F ` A ) e. ran F ) ) |
16 |
15
|
anabsi7 |
|- ( ( Fun F /\ A e. dom F ) -> ( F ` A ) e. ran F ) |