Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Functions
fvelrn
Next ⟩
nelrnfvne
Metamath Proof Explorer
Ascii
Unicode
Theorem
fvelrn
Description:
A function's value belongs to its range.
(Contributed by
NM
, 14-Oct-1996)
Ref
Expression
Assertion
fvelrn
⊢
Fun
⁡
F
∧
A
∈
dom
⁡
F
→
F
⁡
A
∈
ran
⁡
F
Proof
Step
Hyp
Ref
Expression
1
eleq1
⊢
x
=
A
→
x
∈
dom
⁡
F
↔
A
∈
dom
⁡
F
2
1
anbi2d
⊢
x
=
A
→
Fun
⁡
F
∧
x
∈
dom
⁡
F
↔
Fun
⁡
F
∧
A
∈
dom
⁡
F
3
fveq2
⊢
x
=
A
→
F
⁡
x
=
F
⁡
A
4
3
eleq1d
⊢
x
=
A
→
F
⁡
x
∈
ran
⁡
F
↔
F
⁡
A
∈
ran
⁡
F
5
2
4
imbi12d
⊢
x
=
A
→
Fun
⁡
F
∧
x
∈
dom
⁡
F
→
F
⁡
x
∈
ran
⁡
F
↔
Fun
⁡
F
∧
A
∈
dom
⁡
F
→
F
⁡
A
∈
ran
⁡
F
6
funfvop
⊢
Fun
⁡
F
∧
x
∈
dom
⁡
F
→
x
F
⁡
x
∈
F
7
vex
⊢
x
∈
V
8
opeq1
⊢
y
=
x
→
y
F
⁡
x
=
x
F
⁡
x
9
8
eleq1d
⊢
y
=
x
→
y
F
⁡
x
∈
F
↔
x
F
⁡
x
∈
F
10
7
9
spcev
⊢
x
F
⁡
x
∈
F
→
∃
y
y
F
⁡
x
∈
F
11
6
10
syl
⊢
Fun
⁡
F
∧
x
∈
dom
⁡
F
→
∃
y
y
F
⁡
x
∈
F
12
fvex
⊢
F
⁡
x
∈
V
13
12
elrn2
⊢
F
⁡
x
∈
ran
⁡
F
↔
∃
y
y
F
⁡
x
∈
F
14
11
13
sylibr
⊢
Fun
⁡
F
∧
x
∈
dom
⁡
F
→
F
⁡
x
∈
ran
⁡
F
15
5
14
vtoclg
⊢
A
∈
dom
⁡
F
→
Fun
⁡
F
∧
A
∈
dom
⁡
F
→
F
⁡
A
∈
ran
⁡
F
16
15
anabsi7
⊢
Fun
⁡
F
∧
A
∈
dom
⁡
F
→
F
⁡
A
∈
ran
⁡
F