Metamath Proof Explorer


Theorem fvelrn

Description: A function's value belongs to its range. (Contributed by NM, 14-Oct-1996)

Ref Expression
Assertion fvelrn Fun F A dom F F A ran F

Proof

Step Hyp Ref Expression
1 eleq1 x = A x dom F A dom F
2 1 anbi2d x = A Fun F x dom F Fun F A dom F
3 fveq2 x = A F x = F A
4 3 eleq1d x = A F x ran F F A ran F
5 2 4 imbi12d x = A Fun F x dom F F x ran F Fun F A dom F F A ran F
6 funfvop Fun F x dom F x F x F
7 vex x V
8 opeq1 y = x y F x = x F x
9 8 eleq1d y = x y F x F x F x F
10 7 9 spcev x F x F y y F x F
11 6 10 syl Fun F x dom F y y F x F
12 fvex F x V
13 12 elrn2 F x ran F y y F x F
14 11 13 sylibr Fun F x dom F F x ran F
15 5 14 vtoclg A dom F Fun F A dom F F A ran F
16 15 anabsi7 Fun F A dom F F A ran F