Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ dom 𝐹 ↔ 𝐴 ∈ dom 𝐹 ) ) |
2 |
1
|
anbi2d |
⊢ ( 𝑥 = 𝐴 → ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) ↔ ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) ) ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝐴 ) ) |
4 |
3
|
eleq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ↔ ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) ) |
5 |
2 4
|
imbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) ↔ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) ) ) |
6 |
|
funfvop |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ) |
7 |
|
vex |
⊢ 𝑥 ∈ V |
8 |
|
opeq1 |
⊢ ( 𝑦 = 𝑥 → 〈 𝑦 , ( 𝐹 ‘ 𝑥 ) 〉 = 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ) |
9 |
8
|
eleq1d |
⊢ ( 𝑦 = 𝑥 → ( 〈 𝑦 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ↔ 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ) ) |
10 |
7 9
|
spcev |
⊢ ( 〈 𝑥 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 → ∃ 𝑦 〈 𝑦 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ) |
11 |
6 10
|
syl |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ∃ 𝑦 〈 𝑦 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ) |
12 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
13 |
12
|
elrn2 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ↔ ∃ 𝑦 〈 𝑦 , ( 𝐹 ‘ 𝑥 ) 〉 ∈ 𝐹 ) |
14 |
11 13
|
sylibr |
⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ ran 𝐹 ) |
15 |
5 14
|
vtoclg |
⊢ ( 𝐴 ∈ dom 𝐹 → ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) ) |
16 |
15
|
anabsi7 |
⊢ ( ( Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝐴 ) ∈ ran 𝐹 ) |