Metamath Proof Explorer


Theorem nelrnfvne

Description: A function value cannot be any element not contained in the range of the function. (Contributed by AV, 28-Jan-2020)

Ref Expression
Assertion nelrnfvne ( ( Fun 𝐹𝑋 ∈ dom 𝐹𝑌 ∉ ran 𝐹 ) → ( 𝐹𝑋 ) ≠ 𝑌 )

Proof

Step Hyp Ref Expression
1 fvelrn ( ( Fun 𝐹𝑋 ∈ dom 𝐹 ) → ( 𝐹𝑋 ) ∈ ran 𝐹 )
2 elnelne2 ( ( ( 𝐹𝑋 ) ∈ ran 𝐹𝑌 ∉ ran 𝐹 ) → ( 𝐹𝑋 ) ≠ 𝑌 )
3 1 2 stoic3 ( ( Fun 𝐹𝑋 ∈ dom 𝐹𝑌 ∉ ran 𝐹 ) → ( 𝐹𝑋 ) ≠ 𝑌 )