Metamath Proof Explorer


Theorem nelrnfvne

Description: A function value cannot be any element not contained in the range of the function. (Contributed by AV, 28-Jan-2020)

Ref Expression
Assertion nelrnfvne FunFXdomFYranFFXY

Proof

Step Hyp Ref Expression
1 fvelrn FunFXdomFFXranF
2 elnelne2 FXranFYranFFXY
3 1 2 stoic3 FunFXdomFYranFFXY