Step |
Hyp |
Ref |
Expression |
1 |
|
fveqdmss.1 |
⊢ 𝐷 = dom 𝐵 |
2 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝐴 ‘ 𝑥 ) = ( 𝐴 ‘ 𝑎 ) ) |
3 |
|
fveq2 |
⊢ ( 𝑥 = 𝑎 → ( 𝐵 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑎 ) ) |
4 |
2 3
|
eqeq12d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ↔ ( 𝐴 ‘ 𝑎 ) = ( 𝐵 ‘ 𝑎 ) ) ) |
5 |
4
|
rspcva |
⊢ ( ( 𝑎 ∈ 𝐷 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ( 𝐴 ‘ 𝑎 ) = ( 𝐵 ‘ 𝑎 ) ) |
6 |
|
nelrnfvne |
⊢ ( ( Fun 𝐵 ∧ 𝑎 ∈ dom 𝐵 ∧ ∅ ∉ ran 𝐵 ) → ( 𝐵 ‘ 𝑎 ) ≠ ∅ ) |
7 |
|
n0 |
⊢ ( ( 𝐵 ‘ 𝑎 ) ≠ ∅ ↔ ∃ 𝑏 𝑏 ∈ ( 𝐵 ‘ 𝑎 ) ) |
8 |
|
eleq2 |
⊢ ( ( 𝐵 ‘ 𝑎 ) = ( 𝐴 ‘ 𝑎 ) → ( 𝑏 ∈ ( 𝐵 ‘ 𝑎 ) ↔ 𝑏 ∈ ( 𝐴 ‘ 𝑎 ) ) ) |
9 |
8
|
eqcoms |
⊢ ( ( 𝐴 ‘ 𝑎 ) = ( 𝐵 ‘ 𝑎 ) → ( 𝑏 ∈ ( 𝐵 ‘ 𝑎 ) ↔ 𝑏 ∈ ( 𝐴 ‘ 𝑎 ) ) ) |
10 |
|
elfvdm |
⊢ ( 𝑏 ∈ ( 𝐴 ‘ 𝑎 ) → 𝑎 ∈ dom 𝐴 ) |
11 |
9 10
|
syl6bi |
⊢ ( ( 𝐴 ‘ 𝑎 ) = ( 𝐵 ‘ 𝑎 ) → ( 𝑏 ∈ ( 𝐵 ‘ 𝑎 ) → 𝑎 ∈ dom 𝐴 ) ) |
12 |
11
|
com12 |
⊢ ( 𝑏 ∈ ( 𝐵 ‘ 𝑎 ) → ( ( 𝐴 ‘ 𝑎 ) = ( 𝐵 ‘ 𝑎 ) → 𝑎 ∈ dom 𝐴 ) ) |
13 |
12
|
exlimiv |
⊢ ( ∃ 𝑏 𝑏 ∈ ( 𝐵 ‘ 𝑎 ) → ( ( 𝐴 ‘ 𝑎 ) = ( 𝐵 ‘ 𝑎 ) → 𝑎 ∈ dom 𝐴 ) ) |
14 |
7 13
|
sylbi |
⊢ ( ( 𝐵 ‘ 𝑎 ) ≠ ∅ → ( ( 𝐴 ‘ 𝑎 ) = ( 𝐵 ‘ 𝑎 ) → 𝑎 ∈ dom 𝐴 ) ) |
15 |
6 14
|
syl |
⊢ ( ( Fun 𝐵 ∧ 𝑎 ∈ dom 𝐵 ∧ ∅ ∉ ran 𝐵 ) → ( ( 𝐴 ‘ 𝑎 ) = ( 𝐵 ‘ 𝑎 ) → 𝑎 ∈ dom 𝐴 ) ) |
16 |
15
|
3exp |
⊢ ( Fun 𝐵 → ( 𝑎 ∈ dom 𝐵 → ( ∅ ∉ ran 𝐵 → ( ( 𝐴 ‘ 𝑎 ) = ( 𝐵 ‘ 𝑎 ) → 𝑎 ∈ dom 𝐴 ) ) ) ) |
17 |
16
|
com12 |
⊢ ( 𝑎 ∈ dom 𝐵 → ( Fun 𝐵 → ( ∅ ∉ ran 𝐵 → ( ( 𝐴 ‘ 𝑎 ) = ( 𝐵 ‘ 𝑎 ) → 𝑎 ∈ dom 𝐴 ) ) ) ) |
18 |
17 1
|
eleq2s |
⊢ ( 𝑎 ∈ 𝐷 → ( Fun 𝐵 → ( ∅ ∉ ran 𝐵 → ( ( 𝐴 ‘ 𝑎 ) = ( 𝐵 ‘ 𝑎 ) → 𝑎 ∈ dom 𝐴 ) ) ) ) |
19 |
18
|
com24 |
⊢ ( 𝑎 ∈ 𝐷 → ( ( 𝐴 ‘ 𝑎 ) = ( 𝐵 ‘ 𝑎 ) → ( ∅ ∉ ran 𝐵 → ( Fun 𝐵 → 𝑎 ∈ dom 𝐴 ) ) ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝑎 ∈ 𝐷 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ( ( 𝐴 ‘ 𝑎 ) = ( 𝐵 ‘ 𝑎 ) → ( ∅ ∉ ran 𝐵 → ( Fun 𝐵 → 𝑎 ∈ dom 𝐴 ) ) ) ) |
21 |
5 20
|
mpd |
⊢ ( ( 𝑎 ∈ 𝐷 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ( ∅ ∉ ran 𝐵 → ( Fun 𝐵 → 𝑎 ∈ dom 𝐴 ) ) ) |
22 |
21
|
ex |
⊢ ( 𝑎 ∈ 𝐷 → ( ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ( ∅ ∉ ran 𝐵 → ( Fun 𝐵 → 𝑎 ∈ dom 𝐴 ) ) ) ) |
23 |
22
|
com23 |
⊢ ( 𝑎 ∈ 𝐷 → ( ∅ ∉ ran 𝐵 → ( ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ( Fun 𝐵 → 𝑎 ∈ dom 𝐴 ) ) ) ) |
24 |
23
|
com14 |
⊢ ( Fun 𝐵 → ( ∅ ∉ ran 𝐵 → ( ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ( 𝑎 ∈ 𝐷 → 𝑎 ∈ dom 𝐴 ) ) ) ) |
25 |
24
|
3imp |
⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ( 𝑎 ∈ 𝐷 → 𝑎 ∈ dom 𝐴 ) ) |
26 |
25
|
ssrdv |
⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → 𝐷 ⊆ dom 𝐴 ) |