Metamath Proof Explorer
Description: Substitution of equal classes into a membership antecedent.
(Contributed by Jonathan Ben-Naim, 3-Jun-2011)
|
|
Ref |
Expression |
|
Hypotheses |
eleq2s.1 |
⊢ ( 𝐴 ∈ 𝐵 → 𝜑 ) |
|
|
eleq2s.2 |
⊢ 𝐶 = 𝐵 |
|
Assertion |
eleq2s |
⊢ ( 𝐴 ∈ 𝐶 → 𝜑 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eleq2s.1 |
⊢ ( 𝐴 ∈ 𝐵 → 𝜑 ) |
2 |
|
eleq2s.2 |
⊢ 𝐶 = 𝐵 |
3 |
2
|
eleq2i |
⊢ ( 𝐴 ∈ 𝐶 ↔ 𝐴 ∈ 𝐵 ) |
4 |
3 1
|
sylbi |
⊢ ( 𝐴 ∈ 𝐶 → 𝜑 ) |