Metamath Proof Explorer


Theorem eleq2s

Description: Substitution of equal classes into a membership antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypotheses eleq2s.1 ( 𝐴𝐵𝜑 )
eleq2s.2 𝐶 = 𝐵
Assertion eleq2s ( 𝐴𝐶𝜑 )

Proof

Step Hyp Ref Expression
1 eleq2s.1 ( 𝐴𝐵𝜑 )
2 eleq2s.2 𝐶 = 𝐵
3 2 eleq2i ( 𝐴𝐶𝐴𝐵 )
4 3 1 sylbi ( 𝐴𝐶𝜑 )