| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveqdmss.1 |
⊢ 𝐷 = dom 𝐵 |
| 2 |
1
|
fveqdmss |
⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → 𝐷 ⊆ dom 𝐴 ) |
| 3 |
|
dmres |
⊢ dom ( 𝐴 ↾ 𝐷 ) = ( 𝐷 ∩ dom 𝐴 ) |
| 4 |
|
incom |
⊢ ( 𝐷 ∩ dom 𝐴 ) = ( dom 𝐴 ∩ 𝐷 ) |
| 5 |
|
sseqin2 |
⊢ ( 𝐷 ⊆ dom 𝐴 ↔ ( dom 𝐴 ∩ 𝐷 ) = 𝐷 ) |
| 6 |
5
|
biimpi |
⊢ ( 𝐷 ⊆ dom 𝐴 → ( dom 𝐴 ∩ 𝐷 ) = 𝐷 ) |
| 7 |
4 6
|
eqtrid |
⊢ ( 𝐷 ⊆ dom 𝐴 → ( 𝐷 ∩ dom 𝐴 ) = 𝐷 ) |
| 8 |
3 7
|
eqtrid |
⊢ ( 𝐷 ⊆ dom 𝐴 → dom ( 𝐴 ↾ 𝐷 ) = 𝐷 ) |
| 9 |
8 1
|
eqtrdi |
⊢ ( 𝐷 ⊆ dom 𝐴 → dom ( 𝐴 ↾ 𝐷 ) = dom 𝐵 ) |
| 10 |
2 9
|
syl |
⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → dom ( 𝐴 ↾ 𝐷 ) = dom 𝐵 ) |
| 11 |
|
fvres |
⊢ ( 𝑥 ∈ 𝐷 → ( ( 𝐴 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
| 12 |
11
|
adantl |
⊢ ( ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐴 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
| 13 |
|
id |
⊢ ( ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 14 |
12 13
|
sylan9eq |
⊢ ( ( ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ) ∧ 𝑥 ∈ 𝐷 ) ∧ ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ( ( 𝐴 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 15 |
14
|
ex |
⊢ ( ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ( ( 𝐴 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
| 16 |
15
|
ralimdva |
⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ) → ( ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝐷 ( ( 𝐴 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) |
| 17 |
16
|
3impia |
⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐷 ( ( 𝐴 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 18 |
2 7
|
syl |
⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ( 𝐷 ∩ dom 𝐴 ) = 𝐷 ) |
| 19 |
3 18
|
eqtrid |
⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → dom ( 𝐴 ↾ 𝐷 ) = 𝐷 ) |
| 20 |
17 19
|
raleqtrrdv |
⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ dom ( 𝐴 ↾ 𝐷 ) ( ( 𝐴 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) |
| 21 |
|
simpll |
⊢ ( ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ) ∧ 𝑥 ∈ 𝐷 ) → Fun 𝐵 ) |
| 22 |
1
|
eleq2i |
⊢ ( 𝑥 ∈ 𝐷 ↔ 𝑥 ∈ dom 𝐵 ) |
| 23 |
22
|
biimpi |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 ∈ dom 𝐵 ) |
| 24 |
23
|
adantl |
⊢ ( ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ) ∧ 𝑥 ∈ 𝐷 ) → 𝑥 ∈ dom 𝐵 ) |
| 25 |
|
simplr |
⊢ ( ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ) ∧ 𝑥 ∈ 𝐷 ) → ∅ ∉ ran 𝐵 ) |
| 26 |
|
nelrnfvne |
⊢ ( ( Fun 𝐵 ∧ 𝑥 ∈ dom 𝐵 ∧ ∅ ∉ ran 𝐵 ) → ( 𝐵 ‘ 𝑥 ) ≠ ∅ ) |
| 27 |
21 24 25 26
|
syl3anc |
⊢ ( ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ) ∧ 𝑥 ∈ 𝐷 ) → ( 𝐵 ‘ 𝑥 ) ≠ ∅ ) |
| 28 |
|
neeq1 |
⊢ ( ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ( ( 𝐴 ‘ 𝑥 ) ≠ ∅ ↔ ( 𝐵 ‘ 𝑥 ) ≠ ∅ ) ) |
| 29 |
27 28
|
syl5ibrcom |
⊢ ( ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ) ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ( 𝐴 ‘ 𝑥 ) ≠ ∅ ) ) |
| 30 |
29
|
ralimdva |
⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ) → ( ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) ≠ ∅ ) ) |
| 31 |
30
|
3impia |
⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) ≠ ∅ ) |
| 32 |
|
fvn0ssdmfun |
⊢ ( ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) ≠ ∅ → ( 𝐷 ⊆ dom 𝐴 ∧ Fun ( 𝐴 ↾ 𝐷 ) ) ) |
| 33 |
32
|
simprd |
⊢ ( ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) ≠ ∅ → Fun ( 𝐴 ↾ 𝐷 ) ) |
| 34 |
31 33
|
syl |
⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → Fun ( 𝐴 ↾ 𝐷 ) ) |
| 35 |
|
simp1 |
⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → Fun 𝐵 ) |
| 36 |
|
eqfunfv |
⊢ ( ( Fun ( 𝐴 ↾ 𝐷 ) ∧ Fun 𝐵 ) → ( ( 𝐴 ↾ 𝐷 ) = 𝐵 ↔ ( dom ( 𝐴 ↾ 𝐷 ) = dom 𝐵 ∧ ∀ 𝑥 ∈ dom ( 𝐴 ↾ 𝐷 ) ( ( 𝐴 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) ) |
| 37 |
34 35 36
|
syl2anc |
⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ( ( 𝐴 ↾ 𝐷 ) = 𝐵 ↔ ( dom ( 𝐴 ↾ 𝐷 ) = dom 𝐵 ∧ ∀ 𝑥 ∈ dom ( 𝐴 ↾ 𝐷 ) ( ( 𝐴 ↾ 𝐷 ) ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) ) ) |
| 38 |
10 20 37
|
mpbir2and |
⊢ ( ( Fun 𝐵 ∧ ∅ ∉ ran 𝐵 ∧ ∀ 𝑥 ∈ 𝐷 ( 𝐴 ‘ 𝑥 ) = ( 𝐵 ‘ 𝑥 ) ) → ( 𝐴 ↾ 𝐷 ) = 𝐵 ) |