Metamath Proof Explorer


Theorem raleqdv

Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005)

Ref Expression
Hypothesis raleq1d.1 ( 𝜑𝐴 = 𝐵 )
Assertion raleqdv ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐵 𝜓 ) )

Proof

Step Hyp Ref Expression
1 raleq1d.1 ( 𝜑𝐴 = 𝐵 )
2 raleq ( 𝐴 = 𝐵 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐵 𝜓 ) )
3 1 2 syl ( 𝜑 → ( ∀ 𝑥𝐴 𝜓 ↔ ∀ 𝑥𝐵 𝜓 ) )