Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005)
Ref | Expression | ||
---|---|---|---|
Hypothesis | raleq1d.1 | |- ( ph -> A = B ) |
|
Assertion | raleqdv | |- ( ph -> ( A. x e. A ps <-> A. x e. B ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1d.1 | |- ( ph -> A = B ) |
|
2 | raleq | |- ( A = B -> ( A. x e. A ps <-> A. x e. B ps ) ) |
|
3 | 1 2 | syl | |- ( ph -> ( A. x e. A ps <-> A. x e. B ps ) ) |