Metamath Proof Explorer


Theorem raleqdv

Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 13-Nov-2005)

Ref Expression
Hypothesis raleq1d.1
|- ( ph -> A = B )
Assertion raleqdv
|- ( ph -> ( A. x e. A ps <-> A. x e. B ps ) )

Proof

Step Hyp Ref Expression
1 raleq1d.1
 |-  ( ph -> A = B )
2 raleq
 |-  ( A = B -> ( A. x e. A ps <-> A. x e. B ps ) )
3 1 2 syl
 |-  ( ph -> ( A. x e. A ps <-> A. x e. B ps ) )