Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007)
Ref | Expression | ||
---|---|---|---|
Hypothesis | raleq1d.1 | |- ( ph -> A = B ) |
|
Assertion | rexeqdv | |- ( ph -> ( E. x e. A ps <-> E. x e. B ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq1d.1 | |- ( ph -> A = B ) |
|
2 | rexeq | |- ( A = B -> ( E. x e. A ps <-> E. x e. B ps ) ) |
|
3 | 1 2 | syl | |- ( ph -> ( E. x e. A ps <-> E. x e. B ps ) ) |