Metamath Proof Explorer


Theorem rexeqdv

Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007)

Ref Expression
Hypothesis raleq1d.1
|- ( ph -> A = B )
Assertion rexeqdv
|- ( ph -> ( E. x e. A ps <-> E. x e. B ps ) )

Proof

Step Hyp Ref Expression
1 raleq1d.1
 |-  ( ph -> A = B )
2 rexeq
 |-  ( A = B -> ( E. x e. A ps <-> E. x e. B ps ) )
3 1 2 syl
 |-  ( ph -> ( E. x e. A ps <-> E. x e. B ps ) )