Metamath Proof Explorer


Theorem rexeqdv

Description: Equality deduction for restricted existential quantifier. (Contributed by NM, 14-Jan-2007)

Ref Expression
Hypothesis raleqdv.1 φA=B
Assertion rexeqdv φxAψxBψ

Proof

Step Hyp Ref Expression
1 raleqdv.1 φA=B
2 rexeq A=BxAψxBψ
3 1 2 syl φxAψxBψ