Metamath Proof Explorer


Theorem rexeq

Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 29-Oct-1995) Remove usage of ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 30-Apr-2023) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025)

Ref Expression
Assertion rexeq A=BxAφxBφ

Proof

Step Hyp Ref Expression
1 dfcleq A=BxxAxB
2 anbi1 xAxBxAφxBφ
3 2 alexbii xxAxBxxAφxxBφ
4 1 3 sylbi A=BxxAφxxBφ
5 df-rex xAφxxAφ
6 df-rex xBφxxBφ
7 4 5 6 3bitr4g A=BxAφxBφ