Metamath Proof Explorer


Theorem alexbii

Description: Biconditional form of aleximi . (Contributed by BJ, 16-Nov-2020)

Ref Expression
Hypothesis alexbii.1 φψχ
Assertion alexbii xφxψxχ

Proof

Step Hyp Ref Expression
1 alexbii.1 φψχ
2 1 biimpd φψχ
3 2 aleximi xφxψxχ
4 1 biimprd φχψ
5 4 aleximi xφxχxψ
6 3 5 impbid xφxψxχ