Metamath Proof Explorer


Theorem aleximi

Description: A variant of al2imi : instead of applying A. x quantifiers to the final implication, replace them with E. x . A shorter proof is possible using nfa1 , sps and eximd , but it depends on more axioms. (Contributed by Wolf Lammen, 18-Aug-2019)

Ref Expression
Hypothesis aleximi.1 φψχ
Assertion aleximi xφxψxχ

Proof

Step Hyp Ref Expression
1 aleximi.1 φψχ
2 1 con3d φ¬χ¬ψ
3 2 al2imi xφx¬χx¬ψ
4 alnex x¬χ¬xχ
5 alnex x¬ψ¬xψ
6 3 4 5 3imtr3g xφ¬xχ¬xψ
7 6 con4d xφxψxχ