Metamath Proof Explorer


Theorem raleq

Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995) Remove usage of ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 30-Apr-2023) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025)

Ref Expression
Assertion raleq A=BxAφxBφ

Proof

Step Hyp Ref Expression
1 rexeq A=BxA¬φxB¬φ
2 rexnal xA¬φ¬xAφ
3 rexnal xB¬φ¬xBφ
4 1 2 3 3bitr3g A=B¬xAφ¬xBφ
5 4 con4bid A=BxAφxBφ