Metamath Proof Explorer
		
		
		
		Description:  Equality deduction for restricted existential quantifier.  (Contributed by NM, 14-Jan-2007)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | raleqdv.1 | ⊢ ( 𝜑  →  𝐴  =  𝐵 ) | 
				
					|  | Assertion | rexeqdv | ⊢  ( 𝜑  →  ( ∃ 𝑥  ∈  𝐴 𝜓  ↔  ∃ 𝑥  ∈  𝐵 𝜓 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | raleqdv.1 | ⊢ ( 𝜑  →  𝐴  =  𝐵 ) | 
						
							| 2 |  | rexeq | ⊢ ( 𝐴  =  𝐵  →  ( ∃ 𝑥  ∈  𝐴 𝜓  ↔  ∃ 𝑥  ∈  𝐵 𝜓 ) ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝐴 𝜓  ↔  ∃ 𝑥  ∈  𝐵 𝜓 ) ) |