Step |
Hyp |
Ref |
Expression |
1 |
|
fveqdmss.1 |
|- D = dom B |
2 |
1
|
fveqdmss |
|- ( ( Fun B /\ (/) e/ ran B /\ A. x e. D ( A ` x ) = ( B ` x ) ) -> D C_ dom A ) |
3 |
|
dmres |
|- dom ( A |` D ) = ( D i^i dom A ) |
4 |
|
incom |
|- ( D i^i dom A ) = ( dom A i^i D ) |
5 |
|
sseqin2 |
|- ( D C_ dom A <-> ( dom A i^i D ) = D ) |
6 |
5
|
biimpi |
|- ( D C_ dom A -> ( dom A i^i D ) = D ) |
7 |
4 6
|
eqtrid |
|- ( D C_ dom A -> ( D i^i dom A ) = D ) |
8 |
3 7
|
eqtrid |
|- ( D C_ dom A -> dom ( A |` D ) = D ) |
9 |
8 1
|
eqtrdi |
|- ( D C_ dom A -> dom ( A |` D ) = dom B ) |
10 |
2 9
|
syl |
|- ( ( Fun B /\ (/) e/ ran B /\ A. x e. D ( A ` x ) = ( B ` x ) ) -> dom ( A |` D ) = dom B ) |
11 |
|
fvres |
|- ( x e. D -> ( ( A |` D ) ` x ) = ( A ` x ) ) |
12 |
11
|
adantl |
|- ( ( ( Fun B /\ (/) e/ ran B ) /\ x e. D ) -> ( ( A |` D ) ` x ) = ( A ` x ) ) |
13 |
|
id |
|- ( ( A ` x ) = ( B ` x ) -> ( A ` x ) = ( B ` x ) ) |
14 |
12 13
|
sylan9eq |
|- ( ( ( ( Fun B /\ (/) e/ ran B ) /\ x e. D ) /\ ( A ` x ) = ( B ` x ) ) -> ( ( A |` D ) ` x ) = ( B ` x ) ) |
15 |
14
|
ex |
|- ( ( ( Fun B /\ (/) e/ ran B ) /\ x e. D ) -> ( ( A ` x ) = ( B ` x ) -> ( ( A |` D ) ` x ) = ( B ` x ) ) ) |
16 |
15
|
ralimdva |
|- ( ( Fun B /\ (/) e/ ran B ) -> ( A. x e. D ( A ` x ) = ( B ` x ) -> A. x e. D ( ( A |` D ) ` x ) = ( B ` x ) ) ) |
17 |
16
|
3impia |
|- ( ( Fun B /\ (/) e/ ran B /\ A. x e. D ( A ` x ) = ( B ` x ) ) -> A. x e. D ( ( A |` D ) ` x ) = ( B ` x ) ) |
18 |
2 7
|
syl |
|- ( ( Fun B /\ (/) e/ ran B /\ A. x e. D ( A ` x ) = ( B ` x ) ) -> ( D i^i dom A ) = D ) |
19 |
3 18
|
eqtrid |
|- ( ( Fun B /\ (/) e/ ran B /\ A. x e. D ( A ` x ) = ( B ` x ) ) -> dom ( A |` D ) = D ) |
20 |
19
|
raleqdv |
|- ( ( Fun B /\ (/) e/ ran B /\ A. x e. D ( A ` x ) = ( B ` x ) ) -> ( A. x e. dom ( A |` D ) ( ( A |` D ) ` x ) = ( B ` x ) <-> A. x e. D ( ( A |` D ) ` x ) = ( B ` x ) ) ) |
21 |
17 20
|
mpbird |
|- ( ( Fun B /\ (/) e/ ran B /\ A. x e. D ( A ` x ) = ( B ` x ) ) -> A. x e. dom ( A |` D ) ( ( A |` D ) ` x ) = ( B ` x ) ) |
22 |
|
simpll |
|- ( ( ( Fun B /\ (/) e/ ran B ) /\ x e. D ) -> Fun B ) |
23 |
1
|
eleq2i |
|- ( x e. D <-> x e. dom B ) |
24 |
23
|
biimpi |
|- ( x e. D -> x e. dom B ) |
25 |
24
|
adantl |
|- ( ( ( Fun B /\ (/) e/ ran B ) /\ x e. D ) -> x e. dom B ) |
26 |
|
simplr |
|- ( ( ( Fun B /\ (/) e/ ran B ) /\ x e. D ) -> (/) e/ ran B ) |
27 |
|
nelrnfvne |
|- ( ( Fun B /\ x e. dom B /\ (/) e/ ran B ) -> ( B ` x ) =/= (/) ) |
28 |
22 25 26 27
|
syl3anc |
|- ( ( ( Fun B /\ (/) e/ ran B ) /\ x e. D ) -> ( B ` x ) =/= (/) ) |
29 |
|
neeq1 |
|- ( ( A ` x ) = ( B ` x ) -> ( ( A ` x ) =/= (/) <-> ( B ` x ) =/= (/) ) ) |
30 |
28 29
|
syl5ibrcom |
|- ( ( ( Fun B /\ (/) e/ ran B ) /\ x e. D ) -> ( ( A ` x ) = ( B ` x ) -> ( A ` x ) =/= (/) ) ) |
31 |
30
|
ralimdva |
|- ( ( Fun B /\ (/) e/ ran B ) -> ( A. x e. D ( A ` x ) = ( B ` x ) -> A. x e. D ( A ` x ) =/= (/) ) ) |
32 |
31
|
3impia |
|- ( ( Fun B /\ (/) e/ ran B /\ A. x e. D ( A ` x ) = ( B ` x ) ) -> A. x e. D ( A ` x ) =/= (/) ) |
33 |
|
fvn0ssdmfun |
|- ( A. x e. D ( A ` x ) =/= (/) -> ( D C_ dom A /\ Fun ( A |` D ) ) ) |
34 |
33
|
simprd |
|- ( A. x e. D ( A ` x ) =/= (/) -> Fun ( A |` D ) ) |
35 |
32 34
|
syl |
|- ( ( Fun B /\ (/) e/ ran B /\ A. x e. D ( A ` x ) = ( B ` x ) ) -> Fun ( A |` D ) ) |
36 |
|
simp1 |
|- ( ( Fun B /\ (/) e/ ran B /\ A. x e. D ( A ` x ) = ( B ` x ) ) -> Fun B ) |
37 |
|
eqfunfv |
|- ( ( Fun ( A |` D ) /\ Fun B ) -> ( ( A |` D ) = B <-> ( dom ( A |` D ) = dom B /\ A. x e. dom ( A |` D ) ( ( A |` D ) ` x ) = ( B ` x ) ) ) ) |
38 |
35 36 37
|
syl2anc |
|- ( ( Fun B /\ (/) e/ ran B /\ A. x e. D ( A ` x ) = ( B ` x ) ) -> ( ( A |` D ) = B <-> ( dom ( A |` D ) = dom B /\ A. x e. dom ( A |` D ) ( ( A |` D ) ` x ) = ( B ` x ) ) ) ) |
39 |
10 21 38
|
mpbir2and |
|- ( ( Fun B /\ (/) e/ ran B /\ A. x e. D ( A ` x ) = ( B ` x ) ) -> ( A |` D ) = B ) |