Metamath Proof Explorer


Theorem simpll

Description: Simplification of a conjunction. (Contributed by NM, 18-Mar-2007)

Ref Expression
Assertion simpll
|- ( ( ( ph /\ ps ) /\ ch ) -> ph )

Proof

Step Hyp Ref Expression
1 id
 |-  ( ph -> ph )
2 1 ad2antrr
 |-  ( ( ( ph /\ ps ) /\ ch ) -> ph )