| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveqdmss.1 |
|- D = dom B |
| 2 |
|
fveq2 |
|- ( x = a -> ( A ` x ) = ( A ` a ) ) |
| 3 |
|
fveq2 |
|- ( x = a -> ( B ` x ) = ( B ` a ) ) |
| 4 |
2 3
|
eqeq12d |
|- ( x = a -> ( ( A ` x ) = ( B ` x ) <-> ( A ` a ) = ( B ` a ) ) ) |
| 5 |
4
|
rspcva |
|- ( ( a e. D /\ A. x e. D ( A ` x ) = ( B ` x ) ) -> ( A ` a ) = ( B ` a ) ) |
| 6 |
|
nelrnfvne |
|- ( ( Fun B /\ a e. dom B /\ (/) e/ ran B ) -> ( B ` a ) =/= (/) ) |
| 7 |
|
n0 |
|- ( ( B ` a ) =/= (/) <-> E. b b e. ( B ` a ) ) |
| 8 |
|
eleq2 |
|- ( ( B ` a ) = ( A ` a ) -> ( b e. ( B ` a ) <-> b e. ( A ` a ) ) ) |
| 9 |
8
|
eqcoms |
|- ( ( A ` a ) = ( B ` a ) -> ( b e. ( B ` a ) <-> b e. ( A ` a ) ) ) |
| 10 |
|
elfvdm |
|- ( b e. ( A ` a ) -> a e. dom A ) |
| 11 |
9 10
|
biimtrdi |
|- ( ( A ` a ) = ( B ` a ) -> ( b e. ( B ` a ) -> a e. dom A ) ) |
| 12 |
11
|
com12 |
|- ( b e. ( B ` a ) -> ( ( A ` a ) = ( B ` a ) -> a e. dom A ) ) |
| 13 |
12
|
exlimiv |
|- ( E. b b e. ( B ` a ) -> ( ( A ` a ) = ( B ` a ) -> a e. dom A ) ) |
| 14 |
7 13
|
sylbi |
|- ( ( B ` a ) =/= (/) -> ( ( A ` a ) = ( B ` a ) -> a e. dom A ) ) |
| 15 |
6 14
|
syl |
|- ( ( Fun B /\ a e. dom B /\ (/) e/ ran B ) -> ( ( A ` a ) = ( B ` a ) -> a e. dom A ) ) |
| 16 |
15
|
3exp |
|- ( Fun B -> ( a e. dom B -> ( (/) e/ ran B -> ( ( A ` a ) = ( B ` a ) -> a e. dom A ) ) ) ) |
| 17 |
16
|
com12 |
|- ( a e. dom B -> ( Fun B -> ( (/) e/ ran B -> ( ( A ` a ) = ( B ` a ) -> a e. dom A ) ) ) ) |
| 18 |
17 1
|
eleq2s |
|- ( a e. D -> ( Fun B -> ( (/) e/ ran B -> ( ( A ` a ) = ( B ` a ) -> a e. dom A ) ) ) ) |
| 19 |
18
|
com24 |
|- ( a e. D -> ( ( A ` a ) = ( B ` a ) -> ( (/) e/ ran B -> ( Fun B -> a e. dom A ) ) ) ) |
| 20 |
19
|
adantr |
|- ( ( a e. D /\ A. x e. D ( A ` x ) = ( B ` x ) ) -> ( ( A ` a ) = ( B ` a ) -> ( (/) e/ ran B -> ( Fun B -> a e. dom A ) ) ) ) |
| 21 |
5 20
|
mpd |
|- ( ( a e. D /\ A. x e. D ( A ` x ) = ( B ` x ) ) -> ( (/) e/ ran B -> ( Fun B -> a e. dom A ) ) ) |
| 22 |
21
|
ex |
|- ( a e. D -> ( A. x e. D ( A ` x ) = ( B ` x ) -> ( (/) e/ ran B -> ( Fun B -> a e. dom A ) ) ) ) |
| 23 |
22
|
com23 |
|- ( a e. D -> ( (/) e/ ran B -> ( A. x e. D ( A ` x ) = ( B ` x ) -> ( Fun B -> a e. dom A ) ) ) ) |
| 24 |
23
|
com14 |
|- ( Fun B -> ( (/) e/ ran B -> ( A. x e. D ( A ` x ) = ( B ` x ) -> ( a e. D -> a e. dom A ) ) ) ) |
| 25 |
24
|
3imp |
|- ( ( Fun B /\ (/) e/ ran B /\ A. x e. D ( A ` x ) = ( B ` x ) ) -> ( a e. D -> a e. dom A ) ) |
| 26 |
25
|
ssrdv |
|- ( ( Fun B /\ (/) e/ ran B /\ A. x e. D ( A ` x ) = ( B ` x ) ) -> D C_ dom A ) |