Metamath Proof Explorer


Theorem n0

Description: A class is nonempty if and only if it has at least one element. Proposition 5.17(1) of TakeutiZaring p. 20. (Contributed by NM, 29-Sep-2006) Avoid ax-11 , ax-12 . (Revised by Gino Giotto, 28-Jun-2024)

Ref Expression
Assertion n0
|- ( A =/= (/) <-> E. x x e. A )

Proof

Step Hyp Ref Expression
1 df-ne
 |-  ( A =/= (/) <-> -. A = (/) )
2 neq0
 |-  ( -. A = (/) <-> E. x x e. A )
3 1 2 bitri
 |-  ( A =/= (/) <-> E. x x e. A )