Metamath Proof Explorer


Theorem n0

Description: A class is nonempty if and only if it has at least one element. Proposition 5.17(1) of TakeutiZaring p. 20. (Contributed by NM, 29-Sep-2006) Avoid ax-11 , ax-12 . (Revised by Gino Giotto, 28-Jun-2024)

Ref Expression
Assertion n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 df-ne ( 𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅ )
2 neq0 ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥𝐴 )
3 1 2 bitri ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )