Metamath Proof Explorer


Theorem eq0OLDOLD

Description: Obsolete version of eq0 as of 28-Jun-2024. (Contributed by NM, 29-Aug-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eq0OLDOLD ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 nfcv 𝑥 𝐴
2 1 eq0f ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥𝐴 )