Metamath Proof Explorer


Theorem neq0

Description: A class is not empty if and only if it has at least one element. Proposition 5.17(1) of TakeutiZaring p. 20. (Contributed by NM, 21-Jun-1993) Avoid ax-11 , ax-12 . (Revised by Gino Giotto, 28-Jun-2024)

Ref Expression
Assertion neq0 ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 df-ex ( ∃ 𝑥 𝑥𝐴 ↔ ¬ ∀ 𝑥 ¬ 𝑥𝐴 )
2 eq0 ( 𝐴 = ∅ ↔ ∀ 𝑥 ¬ 𝑥𝐴 )
3 1 2 xchbinxr ( ∃ 𝑥 𝑥𝐴 ↔ ¬ 𝐴 = ∅ )
4 3 bicomi ( ¬ 𝐴 = ∅ ↔ ∃ 𝑥 𝑥𝐴 )