Step |
Hyp |
Ref |
Expression |
1 |
|
eufnfv.1 |
⊢ 𝐴 ∈ V |
2 |
|
eufnfv.2 |
⊢ 𝐵 ∈ V |
3 |
1
|
mptex |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V |
4 |
|
eqeq2 |
⊢ ( 𝑧 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ( 𝑓 = 𝑧 ↔ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
5 |
4
|
bibi2d |
⊢ ( 𝑧 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ( ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ↔ 𝑓 = 𝑧 ) ↔ ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ↔ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) ) |
6 |
5
|
albidv |
⊢ ( 𝑧 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ( ∀ 𝑓 ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ↔ 𝑓 = 𝑧 ) ↔ ∀ 𝑓 ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ↔ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) ) |
7 |
3 6
|
spcev |
⊢ ( ∀ 𝑓 ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ↔ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) → ∃ 𝑧 ∀ 𝑓 ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ↔ 𝑓 = 𝑧 ) ) |
8 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
9 |
2 8
|
fnmpti |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 |
10 |
|
fneq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → ( 𝑓 Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) ) |
11 |
9 10
|
mpbiri |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) → 𝑓 Fn 𝐴 ) |
12 |
11
|
pm4.71ri |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ( 𝑓 Fn 𝐴 ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
13 |
|
dffn5 |
⊢ ( 𝑓 Fn 𝐴 ↔ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑥 ) ) ) |
14 |
|
eqeq1 |
⊢ ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑥 ) ) → ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
15 |
13 14
|
sylbi |
⊢ ( 𝑓 Fn 𝐴 → ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
16 |
|
fvex |
⊢ ( 𝑓 ‘ 𝑥 ) ∈ V |
17 |
16
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ V |
18 |
|
mpteqb |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ V → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ) |
19 |
17 18
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝑓 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) |
20 |
15 19
|
bitrdi |
⊢ ( 𝑓 Fn 𝐴 → ( 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ) |
21 |
20
|
pm5.32i |
⊢ ( ( 𝑓 Fn 𝐴 ∧ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ↔ ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ) |
22 |
12 21
|
bitr2i |
⊢ ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ↔ 𝑓 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) |
23 |
7 22
|
mpg |
⊢ ∃ 𝑧 ∀ 𝑓 ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ↔ 𝑓 = 𝑧 ) |
24 |
|
eu6 |
⊢ ( ∃! 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ↔ ∃ 𝑧 ∀ 𝑓 ( ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) ↔ 𝑓 = 𝑧 ) ) |
25 |
23 24
|
mpbir |
⊢ ∃! 𝑓 ( 𝑓 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) = 𝐵 ) |