| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ V ) |
| 2 |
1
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ) |
| 3 |
|
fneq1 |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) ) |
| 4 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 5 |
4
|
mptfng |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) Fn 𝐴 ) |
| 6 |
|
eqid |
⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 7 |
6
|
mptfng |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V ↔ ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) Fn 𝐴 ) |
| 8 |
3 5 7
|
3bitr4g |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ↔ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V ) ) |
| 9 |
8
|
biimpd |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V → ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V ) ) |
| 10 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V ) ) |
| 11 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) |
| 12 |
|
nfmpt1 |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 13 |
11 12
|
nfeq |
⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) |
| 14 |
|
simpll |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 15 |
14
|
fveq1d |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) ) |
| 16 |
4
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ V ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 17 |
16
|
ad2ant2lr |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 18 |
6
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐶 ∈ V ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 19 |
18
|
ad2ant2l |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ‘ 𝑥 ) = 𝐶 ) |
| 20 |
15 17 19
|
3eqtr3d |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) → 𝐵 = 𝐶 ) |
| 21 |
20
|
exp31 |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ( 𝑥 ∈ 𝐴 → ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → 𝐵 = 𝐶 ) ) ) |
| 22 |
13 21
|
ralrimi |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ∀ 𝑥 ∈ 𝐴 ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → 𝐵 = 𝐶 ) ) |
| 23 |
|
ralim |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → 𝐵 = 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) ) |
| 24 |
22 23
|
syl |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) → ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) ) |
| 25 |
10 24
|
biimtrrid |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V ∧ ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V ) → ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) ) |
| 26 |
25
|
expd |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V → ( ∀ 𝑥 ∈ 𝐴 𝐶 ∈ V → ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) ) ) |
| 27 |
9 26
|
mpdd |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V → ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) ) |
| 28 |
27
|
com12 |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) → ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) ) |
| 29 |
|
eqid |
⊢ 𝐴 = 𝐴 |
| 30 |
|
mpteq12 |
⊢ ( ( 𝐴 = 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 31 |
29 30
|
mpan |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ) |
| 32 |
28 31
|
impbid1 |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ V → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) ) |
| 33 |
2 32
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 = 𝐶 ) ) |