Metamath Proof Explorer


Theorem mptfng

Description: The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011)

Ref Expression
Hypothesis mptfng.1 𝐹 = ( 𝑥𝐴𝐵 )
Assertion mptfng ( ∀ 𝑥𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴 )

Proof

Step Hyp Ref Expression
1 mptfng.1 𝐹 = ( 𝑥𝐴𝐵 )
2 eueq ( 𝐵 ∈ V ↔ ∃! 𝑦 𝑦 = 𝐵 )
3 2 ralbii ( ∀ 𝑥𝐴 𝐵 ∈ V ↔ ∀ 𝑥𝐴 ∃! 𝑦 𝑦 = 𝐵 )
4 df-mpt ( 𝑥𝐴𝐵 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
5 1 4 eqtri 𝐹 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
6 5 fnopabg ( ∀ 𝑥𝐴 ∃! 𝑦 𝑦 = 𝐵𝐹 Fn 𝐴 )
7 3 6 bitri ( ∀ 𝑥𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴 )