Metamath Proof Explorer


Theorem mptfng

Description: The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011)

Ref Expression
Hypothesis mptfng.1
|- F = ( x e. A |-> B )
Assertion mptfng
|- ( A. x e. A B e. _V <-> F Fn A )

Proof

Step Hyp Ref Expression
1 mptfng.1
 |-  F = ( x e. A |-> B )
2 eueq
 |-  ( B e. _V <-> E! y y = B )
3 2 ralbii
 |-  ( A. x e. A B e. _V <-> A. x e. A E! y y = B )
4 df-mpt
 |-  ( x e. A |-> B ) = { <. x , y >. | ( x e. A /\ y = B ) }
5 1 4 eqtri
 |-  F = { <. x , y >. | ( x e. A /\ y = B ) }
6 5 fnopabg
 |-  ( A. x e. A E! y y = B <-> F Fn A )
7 3 6 bitri
 |-  ( A. x e. A B e. _V <-> F Fn A )