Metamath Proof Explorer


Theorem ralbii

Description: Inference adding restricted universal quantifier to both sides of an equivalence. (Contributed by NM, 23-Nov-1994) (Revised by Mario Carneiro, 17-Oct-2016) (Proof shortened by Wolf Lammen, 4-Dec-2019)

Ref Expression
Hypothesis ralbii.1
|- ( ph <-> ps )
Assertion ralbii
|- ( A. x e. A ph <-> A. x e. A ps )

Proof

Step Hyp Ref Expression
1 ralbii.1
 |-  ( ph <-> ps )
2 1 a1i
 |-  ( x e. A -> ( ph <-> ps ) )
3 2 ralbiia
 |-  ( A. x e. A ph <-> A. x e. A ps )