| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dffn5 | ⊢ ( 𝐹  Fn  𝐴  ↔  𝐹  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 2 |  | dffn5 | ⊢ ( 𝐺  Fn  𝐴  ↔  𝐺  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 3 |  | eqeq12 | ⊢ ( ( 𝐹  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑥 ) )  ∧  𝐺  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐺 ‘ 𝑥 ) ) )  →  ( 𝐹  =  𝐺  ↔  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 4 | 1 2 3 | syl2anb | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ( 𝐹  =  𝐺  ↔  ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐺 ‘ 𝑥 ) ) ) ) | 
						
							| 5 |  | fvex | ⊢ ( 𝐹 ‘ 𝑥 )  ∈  V | 
						
							| 6 | 5 | rgenw | ⊢ ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ∈  V | 
						
							| 7 |  | mpteqb | ⊢ ( ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  ∈  V  →  ( ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐺 ‘ 𝑥 ) )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) | 
						
							| 8 | 6 7 | ax-mp | ⊢ ( ( 𝑥  ∈  𝐴  ↦  ( 𝐹 ‘ 𝑥 ) )  =  ( 𝑥  ∈  𝐴  ↦  ( 𝐺 ‘ 𝑥 ) )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) | 
						
							| 9 | 4 8 | bitrdi | ⊢ ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  →  ( 𝐹  =  𝐺  ↔  ∀ 𝑥  ∈  𝐴 ( 𝐹 ‘ 𝑥 )  =  ( 𝐺 ‘ 𝑥 ) ) ) |