Step |
Hyp |
Ref |
Expression |
1 |
|
dffn5 |
⊢ ( 𝐹 Fn 𝐴 ↔ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
2 |
|
dffn5 |
⊢ ( 𝐺 Fn 𝐴 ↔ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ) |
3 |
|
eqeq12 |
⊢ ( ( 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ∧ 𝐺 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ) → ( 𝐹 = 𝐺 ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ) ) |
4 |
1 2 3
|
syl2anb |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐹 = 𝐺 ↔ ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ) ) |
5 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑥 ) ∈ V |
6 |
5
|
rgenw |
⊢ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ V |
7 |
|
mpteqb |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ V → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |
8 |
6 7
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( 𝐺 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
9 |
4 8
|
bitrdi |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) → ( 𝐹 = 𝐺 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) ) |