Metamath Proof Explorer


Theorem suppss

Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 28-May-2019) (Proof shortened by SN, 5-Aug-2024)

Ref Expression
Hypotheses suppss.f φF:AB
suppss.n φkAWFk=Z
Assertion suppss φFsuppZW

Proof

Step Hyp Ref Expression
1 suppss.f φF:AB
2 suppss.n φkAWFk=Z
3 1 ffnd φFFnA
4 3 adantl FVZVφFFnA
5 simpll FVZVφFV
6 simplr FVZVφZV
7 elsuppfng FFnAFVZVksuppZFkAFkZ
8 4 5 6 7 syl3anc FVZVφksuppZFkAFkZ
9 eldif kAWkA¬kW
10 2 adantll FVZVφkAWFk=Z
11 9 10 sylan2br FVZVφkA¬kWFk=Z
12 11 expr FVZVφkA¬kWFk=Z
13 12 necon1ad FVZVφkAFkZkW
14 13 expimpd FVZVφkAFkZkW
15 8 14 sylbid FVZVφksuppZFkW
16 15 ssrdv FVZVφFsuppZW
17 16 ex FVZVφFsuppZW
18 supp0prc ¬FVZVFsuppZ=
19 0ss W
20 18 19 eqsstrdi ¬FVZVFsuppZW
21 20 a1d ¬FVZVφFsuppZW
22 17 21 pm2.61i φFsuppZW