Metamath Proof Explorer


Theorem suppss

Description: Show that the support of a function is contained in a set. (Contributed by Mario Carneiro, 19-Dec-2014) (Revised by AV, 28-May-2019)

Ref Expression
Hypotheses suppss.f φ F : A B
suppss.n φ k A W F k = Z
Assertion suppss φ F supp Z W

Proof

Step Hyp Ref Expression
1 suppss.f φ F : A B
2 suppss.n φ k A W F k = Z
3 1 ffnd φ F Fn A
4 3 adantl F V Z V φ F Fn A
5 fdm F : A B dom F = A
6 dmexg F V dom F V
7 6 adantr F V Z V dom F V
8 eleq1 A = dom F A V dom F V
9 8 eqcoms dom F = A A V dom F V
10 7 9 syl5ibr dom F = A F V Z V A V
11 1 5 10 3syl φ F V Z V A V
12 11 impcom F V Z V φ A V
13 simplr F V Z V φ Z V
14 elsuppfn F Fn A A V Z V k supp Z F k A F k Z
15 4 12 13 14 syl3anc F V Z V φ k supp Z F k A F k Z
16 eldif k A W k A ¬ k W
17 2 adantll F V Z V φ k A W F k = Z
18 16 17 sylan2br F V Z V φ k A ¬ k W F k = Z
19 18 expr F V Z V φ k A ¬ k W F k = Z
20 19 necon1ad F V Z V φ k A F k Z k W
21 20 expimpd F V Z V φ k A F k Z k W
22 15 21 sylbid F V Z V φ k supp Z F k W
23 22 ssrdv F V Z V φ F supp Z W
24 23 ex F V Z V φ F supp Z W
25 supp0prc ¬ F V Z V F supp Z =
26 0ss W
27 25 26 eqsstrdi ¬ F V Z V F supp Z W
28 27 a1d ¬ F V Z V φ F supp Z W
29 24 28 pm2.61i φ F supp Z W