Metamath Proof Explorer


Theorem coexg

Description: The composition of two sets is a set. (Contributed by NM, 19-Mar-1998)

Ref Expression
Assertion coexg AVBWABV

Proof

Step Hyp Ref Expression
1 cossxp ABdomB×ranA
2 dmexg BWdomBV
3 rnexg AVranAV
4 xpexg domBVranAVdomB×ranAV
5 2 3 4 syl2anr AVBWdomB×ranAV
6 ssexg ABdomB×ranAdomB×ranAVABV
7 1 5 6 sylancr AVBWABV