Metamath Proof Explorer


Theorem xpexg

Description: The Cartesian product of two sets is a set. Proposition 6.2 of TakeutiZaring p. 23. See also xpexgALT . (Contributed by NM, 14-Aug-1994)

Ref Expression
Assertion xpexg A V B W A × B V

Proof

Step Hyp Ref Expression
1 xpsspw A × B 𝒫 𝒫 A B
2 unexg A V B W A B V
3 pwexg A B V 𝒫 A B V
4 pwexg 𝒫 A B V 𝒫 𝒫 A B V
5 2 3 4 3syl A V B W 𝒫 𝒫 A B V
6 ssexg A × B 𝒫 𝒫 A B 𝒫 𝒫 A B V A × B V
7 1 5 6 sylancr A V B W A × B V