Metamath Proof Explorer


Theorem unexg

Description: A union of two sets is a set. Corollary 5.8 of TakeutiZaring p. 16. (Contributed by NM, 18-Sep-2006)

Ref Expression
Assertion unexg AVBWABV

Proof

Step Hyp Ref Expression
1 elex AVAV
2 elex BWBV
3 unexb AVBVABV
4 3 biimpi AVBVABV
5 1 2 4 syl2an AVBWABV