Description: The union of two sets is a set. Corollary 5.8 of TakeutiZaring p. 16. (Contributed by NM, 18-Sep-2006) Prove unexg first and then unex and unexb from it. (Revised by BJ, 21-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unexg | |- ( ( A e. V /\ B e. W ) -> ( A u. B ) e. _V ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | uniprg |  |-  ( ( A e. V /\ B e. W ) -> U. { A , B } = ( A u. B ) ) | |
| 2 | prex |  |-  { A , B } e. _V | |
| 3 | 2 | a1i |  |-  ( ( A e. V /\ B e. W ) -> { A , B } e. _V ) | 
| 4 | 3 | uniexd |  |-  ( ( A e. V /\ B e. W ) -> U. { A , B } e. _V ) | 
| 5 | 1 4 | eqeltrrd | |- ( ( A e. V /\ B e. W ) -> ( A u. B ) e. _V ) |