Description: A union of two sets is a set. Corollary 5.8 of TakeutiZaring p. 16. (Contributed by NM, 18-Sep-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | unexg | |- ( ( A e. V /\ B e. W ) -> ( A u. B ) e. _V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |- ( A e. V -> A e. _V ) |
|
2 | elex | |- ( B e. W -> B e. _V ) |
|
3 | unexb | |- ( ( A e. _V /\ B e. _V ) <-> ( A u. B ) e. _V ) |
|
4 | 3 | biimpi | |- ( ( A e. _V /\ B e. _V ) -> ( A u. B ) e. _V ) |
5 | 1 2 4 | syl2an | |- ( ( A e. V /\ B e. W ) -> ( A u. B ) e. _V ) |