Metamath Proof Explorer


Theorem xpexg

Description: The Cartesian product of two sets is a set. Proposition 6.2 of TakeutiZaring p. 23. See also xpexgALT . (Contributed by NM, 14-Aug-1994)

Ref Expression
Assertion xpexg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 × 𝐵 ) ∈ V )

Proof

Step Hyp Ref Expression
1 xpsspw ( 𝐴 × 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴𝐵 )
2 unexg ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴𝐵 ) ∈ V )
3 pwexg ( ( 𝐴𝐵 ) ∈ V → 𝒫 ( 𝐴𝐵 ) ∈ V )
4 pwexg ( 𝒫 ( 𝐴𝐵 ) ∈ V → 𝒫 𝒫 ( 𝐴𝐵 ) ∈ V )
5 2 3 4 3syl ( ( 𝐴𝑉𝐵𝑊 ) → 𝒫 𝒫 ( 𝐴𝐵 ) ∈ V )
6 ssexg ( ( ( 𝐴 × 𝐵 ) ⊆ 𝒫 𝒫 ( 𝐴𝐵 ) ∧ 𝒫 𝒫 ( 𝐴𝐵 ) ∈ V ) → ( 𝐴 × 𝐵 ) ∈ V )
7 1 5 6 sylancr ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 × 𝐵 ) ∈ V )