Metamath Proof Explorer


Theorem xpexgALT

Description: Alternate proof of xpexg requiring Replacement ( ax-rep ) but not Power Set ( ax-pow ). (Contributed by Mario Carneiro, 20-May-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion xpexgALT AVBWA×BV

Proof

Step Hyp Ref Expression
1 iunid yBy=B
2 1 xpeq2i A×yBy=A×B
3 xpiundi A×yBy=yBA×y
4 2 3 eqtr3i A×B=yBA×y
5 id BWBW
6 fconstmpt A×y=xAy
7 mptexg AVxAyV
8 6 7 eqeltrid AVA×yV
9 8 ralrimivw AVyBA×yV
10 iunexg BWyBA×yVyBA×yV
11 5 9 10 syl2anr AVBWyBA×yV
12 4 11 eqeltrid AVBWA×BV