Metamath Proof Explorer


Theorem xpexgALT

Description: Alternate proof of xpexg requiring Replacement ( ax-rep ) but not Power Set ( ax-pow ). (Contributed by Mario Carneiro, 20-May-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion xpexgALT
|- ( ( A e. V /\ B e. W ) -> ( A X. B ) e. _V )

Proof

Step Hyp Ref Expression
1 iunid
 |-  U_ y e. B { y } = B
2 1 xpeq2i
 |-  ( A X. U_ y e. B { y } ) = ( A X. B )
3 xpiundi
 |-  ( A X. U_ y e. B { y } ) = U_ y e. B ( A X. { y } )
4 2 3 eqtr3i
 |-  ( A X. B ) = U_ y e. B ( A X. { y } )
5 id
 |-  ( B e. W -> B e. W )
6 fconstmpt
 |-  ( A X. { y } ) = ( x e. A |-> y )
7 mptexg
 |-  ( A e. V -> ( x e. A |-> y ) e. _V )
8 6 7 eqeltrid
 |-  ( A e. V -> ( A X. { y } ) e. _V )
9 8 ralrimivw
 |-  ( A e. V -> A. y e. B ( A X. { y } ) e. _V )
10 iunexg
 |-  ( ( B e. W /\ A. y e. B ( A X. { y } ) e. _V ) -> U_ y e. B ( A X. { y } ) e. _V )
11 5 9 10 syl2anr
 |-  ( ( A e. V /\ B e. W ) -> U_ y e. B ( A X. { y } ) e. _V )
12 4 11 eqeltrid
 |-  ( ( A e. V /\ B e. W ) -> ( A X. B ) e. _V )