Metamath Proof Explorer


Theorem fconstmpt

Description: Representation of a constant function using the mapping operation. (Note that x cannot appear free in B .) (Contributed by NM, 12-Oct-1999) (Revised by Mario Carneiro, 16-Nov-2013)

Ref Expression
Assertion fconstmpt A×B=xAB

Proof

Step Hyp Ref Expression
1 velsn yBy=B
2 1 anbi2i xAyBxAy=B
3 2 opabbii xy|xAyB=xy|xAy=B
4 df-xp A×B=xy|xAyB
5 df-mpt xAB=xy|xAy=B
6 3 4 5 3eqtr4i A×B=xAB