Metamath Proof Explorer


Theorem vtoclr

Description: Variable to class conversion of transitive relation. (Contributed by NM, 9-Jun-1998) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses vtoclr.1 RelR
vtoclr.2 xRyyRzxRz
Assertion vtoclr ARBBRCARC

Proof

Step Hyp Ref Expression
1 vtoclr.1 RelR
2 vtoclr.2 xRyyRzxRz
3 1 brrelex12i ARBAVBV
4 1 brrelex2i BRCCV
5 breq1 x=AxRyARy
6 5 anbi1d x=AxRyyRCARyyRC
7 breq1 x=AxRCARC
8 6 7 imbi12d x=AxRyyRCxRCARyyRCARC
9 8 imbi2d x=ACVxRyyRCxRCCVARyyRCARC
10 breq2 y=BARyARB
11 breq1 y=ByRCBRC
12 10 11 anbi12d y=BARyyRCARBBRC
13 12 imbi1d y=BARyyRCARCARBBRCARC
14 13 imbi2d y=BCVARyyRCARCCVARBBRCARC
15 breq2 z=CyRzyRC
16 15 anbi2d z=CxRyyRzxRyyRC
17 breq2 z=CxRzxRC
18 16 17 imbi12d z=CxRyyRzxRzxRyyRCxRC
19 18 2 vtoclg CVxRyyRCxRC
20 9 14 19 vtocl2g AVBVCVARBBRCARC
21 3 4 20 syl2im ARBBRCARBBRCARC
22 21 imp ARBBRCARBBRCARC
23 22 pm2.43i ARBBRCARC