Metamath Proof Explorer


Theorem vtocl2g

Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995) Remove dependency on ax-10 , ax-11 , and ax-13 . (Revised by Steven Nguyen, 29-Nov-2022)

Ref Expression
Hypotheses vtocl2g.1 x=Aφψ
vtocl2g.2 y=Bψχ
vtocl2g.3 φ
Assertion vtocl2g AVBWχ

Proof

Step Hyp Ref Expression
1 vtocl2g.1 x=Aφψ
2 vtocl2g.2 y=Bψχ
3 vtocl2g.3 φ
4 elex AVAV
5 2 imbi2d y=BAVψAVχ
6 1 3 vtoclg AVψ
7 5 6 vtoclg BWAVχ
8 4 7 mpan9 AVBWχ