Metamath Proof Explorer


Theorem vtocl2g

Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 25-Apr-1995) Remove dependency on ax-10 , ax-11 , and ax-13 . (Revised by Steven Nguyen, 29-Nov-2022)

Ref Expression
Hypotheses vtocl2g.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
vtocl2g.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
vtocl2g.3 𝜑
Assertion vtocl2g ( ( 𝐴𝑉𝐵𝑊 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 vtocl2g.1 ( 𝑥 = 𝐴 → ( 𝜑𝜓 ) )
2 vtocl2g.2 ( 𝑦 = 𝐵 → ( 𝜓𝜒 ) )
3 vtocl2g.3 𝜑
4 elex ( 𝐴𝑉𝐴 ∈ V )
5 2 imbi2d ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ V → 𝜓 ) ↔ ( 𝐴 ∈ V → 𝜒 ) ) )
6 1 3 vtoclg ( 𝐴 ∈ V → 𝜓 )
7 5 6 vtoclg ( 𝐵𝑊 → ( 𝐴 ∈ V → 𝜒 ) )
8 4 7 mpan9 ( ( 𝐴𝑉𝐵𝑊 ) → 𝜒 )