Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
The universal class
vtocl2g
Metamath Proof Explorer
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM , 25-Apr-1995) Remove dependency on ax-10 , ax-11 , and
ax-13 . (Revised by Steven Nguyen , 29-Nov-2022)
Ref
Expression
Hypotheses
vtocl2g.1
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
vtocl2g.2
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) )
vtocl2g.3
⊢ 𝜑
Assertion
vtocl2g
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝜒 )
Proof
Step
Hyp
Ref
Expression
1
vtocl2g.1
⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) )
2
vtocl2g.2
⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) )
3
vtocl2g.3
⊢ 𝜑
4
elex
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V )
5
2
imbi2d
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ V → 𝜓 ) ↔ ( 𝐴 ∈ V → 𝜒 ) ) )
6
1 3
vtoclg
⊢ ( 𝐴 ∈ V → 𝜓 )
7
5 6
vtoclg
⊢ ( 𝐵 ∈ 𝑊 → ( 𝐴 ∈ V → 𝜒 ) )
8
4 7
mpan9
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → 𝜒 )