Metamath Proof Explorer


Theorem rnexg

Description: The range of a set is a set. Corollary 6.8(3) of TakeutiZaring p. 26. Similar to Lemma 3D of Enderton p. 41. (Contributed by NM, 31-Mar-1995)

Ref Expression
Assertion rnexg AVranAV

Proof

Step Hyp Ref Expression
1 uniexg AVAV
2 uniexg AVAV
3 ssun2 ranAdomAranA
4 dmrnssfld domAranAA
5 3 4 sstri ranAA
6 ssexg ranAAAVranAV
7 5 6 mpan AVranAV
8 1 2 7 3syl AVranAV