Metamath Proof Explorer


Theorem dmrnssfld

Description: The domain and range of a class are included in its double union. (Contributed by NM, 13-May-2008)

Ref Expression
Assertion dmrnssfld domAranAA

Proof

Step Hyp Ref Expression
1 vex xV
2 1 eldm2 xdomAyxyA
3 1 prid1 xxy
4 vex yV
5 1 4 uniop xy=xy
6 1 4 uniopel xyAxyA
7 5 6 eqeltrrid xyAxyA
8 elssuni xyAxyA
9 7 8 syl xyAxyA
10 9 sseld xyAxxyxA
11 3 10 mpi xyAxA
12 11 exlimiv yxyAxA
13 2 12 sylbi xdomAxA
14 13 ssriv domAA
15 4 elrn2 yranAxxyA
16 4 prid2 yxy
17 9 sseld xyAyxyyA
18 16 17 mpi xyAyA
19 18 exlimiv xxyAyA
20 15 19 sylbi yranAyA
21 20 ssriv ranAA
22 14 21 unssi domAranAA