Metamath Proof Explorer


Theorem uniopel

Description: Ordered pair membership is inherited by class union. (Contributed by NM, 13-May-2008) (Revised by Mario Carneiro, 26-Apr-2015)

Ref Expression
Hypotheses opthw.1 AV
opthw.2 BV
Assertion uniopel ABCABC

Proof

Step Hyp Ref Expression
1 opthw.1 AV
2 opthw.2 BV
3 1 2 uniop AB=AB
4 1 2 opi2 ABAB
5 3 4 eqeltri ABAB
6 elssuni ABCABC
7 6 sseld ABCABABABC
8 5 7 mpi ABCABC