Metamath Proof Explorer


Theorem opthhausdorff

Description: Justification theorem for the ordered pair definition of Felix Hausdorff in "Grundzüge der Mengenlehre" ("Basics of Set Theory"), 1914, p. 32: <. A , B >._H = { { A , O } , { B , T } } . Hausdorff used 1 and 2 instead of O and T , but actually, any two different fixed sets will do (e.g., O = (/) and T = { (/) } , see 0nep0 ). Furthermore, Hausdorff demanded that O and T are both different from A as well as B , which is actually not necessary in full extent ( A =/= T is not required). This definition is meaningful only for classes A and B that exist as sets (i.e., are not proper classes): If A and C were different proper classes ( A =/= C ), then { { A , O } , { B , T } } = { { C , O } , { D , T } <-> { { O } , { B , T } } = { { O } , { D , T } is true if B = D , but ( A = C /\ B = D ) would be false. See df-op for other ordered pair definitions. (Contributed by AV, 14-Jun-2022)

Ref Expression
Hypotheses opthhausdorff.a AV
opthhausdorff.b BV
opthhausdorff.o AO
opthhausdorff.n BO
opthhausdorff.t BT
opthhausdorff.1 OV
opthhausdorff.2 TV
opthhausdorff.3 OT
Assertion opthhausdorff AOBT=CODTA=CB=D

Proof

Step Hyp Ref Expression
1 opthhausdorff.a AV
2 opthhausdorff.b BV
3 opthhausdorff.o AO
4 opthhausdorff.n BO
5 opthhausdorff.t BT
6 opthhausdorff.1 OV
7 opthhausdorff.2 TV
8 opthhausdorff.3 OT
9 prex AOV
10 prex BTV
11 1 6 pm3.2i AVOV
12 2 7 pm3.2i BVTV
13 11 12 pm3.2i AVOVBVTV
14 4 necomi OB
15 14 8 pm3.2i OBOT
16 15 olci ABATOBOT
17 prneimg AVOVBVTVABATOBOTAOBT
18 13 16 17 mp2 AOBT
19 preq12nebg AOVBTVAOBTAOBT=CODTAO=COBT=DTAO=DTBT=CO
20 9 10 18 19 mp3an AOBT=CODTAO=COBT=DTAO=DTBT=CO
21 preq12nebg AVOVAOAO=COA=CO=OA=OO=C
22 1 6 3 21 mp3an AO=COA=CO=OA=OO=C
23 preq12nebg BVTVBTBT=DTB=DT=TB=TT=D
24 2 7 5 23 mp3an BT=DTB=DT=TB=TT=D
25 simpl A=CO=OA=C
26 simpl B=DT=TB=D
27 25 26 anim12i A=CO=OB=DT=TA=CB=D
28 eqneqall A=OAOA=CB=D
29 3 28 mpi A=OA=CB=D
30 29 adantr A=OO=CA=CB=D
31 eqneqall B=TBTA=CB=D
32 5 31 mpi B=TA=CB=D
33 32 adantr B=TT=DA=CB=D
34 27 30 33 ccase2 A=CO=OA=OO=CB=DT=TB=TT=DA=CB=D
35 22 24 34 syl2anb AO=COBT=DTA=CB=D
36 preq12nebg AVOVAOAO=DTA=DO=TA=TO=D
37 1 6 3 36 mp3an AO=DTA=DO=TA=TO=D
38 preq12nebg BVTVBTBT=COB=CT=OB=OT=C
39 2 7 5 38 mp3an BT=COB=CT=OB=OT=C
40 eqneqall O=TOTA=CB=D
41 8 40 mpi O=TA=CB=D
42 41 adantl A=DO=TA=CB=D
43 42 a1d A=DO=TB=CT=OB=OT=CA=CB=D
44 8 necomi TO
45 eqneqall T=OTOA=CB=D
46 44 45 mpi T=OA=CB=D
47 46 adantl B=CT=OA=CB=D
48 47 a1d B=CT=OA=TO=DA=CB=D
49 eqneqall B=OBOA=CB=D
50 4 49 mpi B=OA=CB=D
51 50 adantr B=OT=CA=CB=D
52 51 a1d B=OT=CA=TO=DA=CB=D
53 48 52 jaoi B=CT=OB=OT=CA=TO=DA=CB=D
54 53 com12 A=TO=DB=CT=OB=OT=CA=CB=D
55 43 54 jaoi A=DO=TA=TO=DB=CT=OB=OT=CA=CB=D
56 55 imp A=DO=TA=TO=DB=CT=OB=OT=CA=CB=D
57 37 39 56 syl2anb AO=DTBT=COA=CB=D
58 35 57 jaoi AO=COBT=DTAO=DTBT=COA=CB=D
59 20 58 sylbi AOBT=CODTA=CB=D
60 preq1 A=CAO=CO
61 60 adantr A=CB=DAO=CO
62 preq1 B=DBT=DT
63 62 adantl A=CB=DBT=DT
64 61 63 preq12d A=CB=DAOBT=CODT
65 59 64 impbii AOBT=CODTA=CB=D