Description: Justification theorem for the ordered pair definition of Felix Hausdorff in "Grundzüge der Mengenlehre" ("Basics of Set Theory"), 1914, p. 32: <. A , B >._H = { { A , O } , { B , T } } . Hausdorff used 1 and 2 instead of O and T , but actually, any two different fixed sets will do (e.g., O = (/) and T = { (/) } , see 0nep0 ). Furthermore, Hausdorff demanded that O and T are both different from A as well as B , which is actually not necessary in full extent ( A =/= T is not required). This definition is meaningful only for classes A and B that exist as sets (i.e., are not proper classes): If A and C were different proper classes ( A =/= C ), then { { A , O } , { B , T } } = { { C , O } , { D , T } <-> { { O } , { B , T } } = { { O } , { D , T } is true if B = D , but ( A = C /\ B = D ) would be false. See df-op for other ordered pair definitions. (Contributed by AV, 14-Jun-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | opthhausdorff.a | |
|
opthhausdorff.b | |
||
opthhausdorff.o | |
||
opthhausdorff.n | |
||
opthhausdorff.t | |
||
opthhausdorff.1 | |
||
opthhausdorff.2 | |
||
opthhausdorff.3 | |
||
Assertion | opthhausdorff | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opthhausdorff.a | |
|
2 | opthhausdorff.b | |
|
3 | opthhausdorff.o | |
|
4 | opthhausdorff.n | |
|
5 | opthhausdorff.t | |
|
6 | opthhausdorff.1 | |
|
7 | opthhausdorff.2 | |
|
8 | opthhausdorff.3 | |
|
9 | prex | |
|
10 | prex | |
|
11 | 1 6 | pm3.2i | |
12 | 2 7 | pm3.2i | |
13 | 11 12 | pm3.2i | |
14 | 4 | necomi | |
15 | 14 8 | pm3.2i | |
16 | 15 | olci | |
17 | prneimg | |
|
18 | 13 16 17 | mp2 | |
19 | preq12nebg | |
|
20 | 9 10 18 19 | mp3an | |
21 | preq12nebg | |
|
22 | 1 6 3 21 | mp3an | |
23 | preq12nebg | |
|
24 | 2 7 5 23 | mp3an | |
25 | simpl | |
|
26 | simpl | |
|
27 | 25 26 | anim12i | |
28 | eqneqall | |
|
29 | 3 28 | mpi | |
30 | 29 | adantr | |
31 | eqneqall | |
|
32 | 5 31 | mpi | |
33 | 32 | adantr | |
34 | 27 30 33 | ccase2 | |
35 | 22 24 34 | syl2anb | |
36 | preq12nebg | |
|
37 | 1 6 3 36 | mp3an | |
38 | preq12nebg | |
|
39 | 2 7 5 38 | mp3an | |
40 | eqneqall | |
|
41 | 8 40 | mpi | |
42 | 41 | adantl | |
43 | 42 | a1d | |
44 | 8 | necomi | |
45 | eqneqall | |
|
46 | 44 45 | mpi | |
47 | 46 | adantl | |
48 | 47 | a1d | |
49 | eqneqall | |
|
50 | 4 49 | mpi | |
51 | 50 | adantr | |
52 | 51 | a1d | |
53 | 48 52 | jaoi | |
54 | 53 | com12 | |
55 | 43 54 | jaoi | |
56 | 55 | imp | |
57 | 37 39 56 | syl2anb | |
58 | 35 57 | jaoi | |
59 | 20 58 | sylbi | |
60 | preq1 | |
|
61 | 60 | adantr | |
62 | preq1 | |
|
63 | 62 | adantl | |
64 | 61 63 | preq12d | |
65 | 59 64 | impbii | |